1) Altimeter correction for non-standard pressure

'From high to low, look below'
1 mb = 30 feet

FL 270 QNH 977
ISA - 36 mb → 36 x 30 = 1080 feet
Altitude = 25920 feet

2) Altimeter correction for non-standard temperature

'From high to low, look below'
Corr (feet) = 4 x ∆ISA x Altitude (feet) / 1000

FL 300 ISA - 6°C
Corr = 4 x 6 x 30 = 680 feet
Alt = 29320 feet

3) SAT out of TAT

SAT (°C) = TAT (°C) - 3 x Mach

TAT = -17 °C Mach 0.64
SAT = -17 - 3 x 6 = -17 - 18 = -35 °C

4) SAT out of TAT for higher Mach and lower Temp

SAT (°C) = TAT (°C) - (100 x Mach) - 50

TAT = -31 °C Mach 0.74
You have 24 above M 0.50
SAT = -31 -24 = -55 °C

5) Level Off procedure if R/C ≤ 1000 feet/min (also for descent R/D)

∆ feet = R/C (feet/min) / 10

Climbing to FL 210 R/C = 2000 feet/min
∆ feet = 200 feet → start level off at 20800 feet

6) Level Off procedure if R/C > 1000 feet/min (also for descent R/D)

∆ feet = 2 x R/C (feet/min) / 10

Climbing to FL 300 R/C = 2500 feet/min
∆ feet = 500 feet → start level off at 29500 feet

7) Cruise Flight Level computation

Cruise FL = Trip Distance (NM)

EBBR-EBOS = 60 NM
Optimum is FL 60

8) Vertical Speed to rejoin assigned altitude

V/S (feet/min) = 2 x ∆ feet

If on 6250 feet instead of 6000 feet, correct with V/S = 500 feet/min

9) To obtain TAS out of Mach-number (high altitudes - cruise)

TAS (kt) = 6 x Mach

M 0.72
TAS = 420 kt

10) To find TAS out of IAS and FL

TAS (kt) = IAS (kt) + FL / 2

FL 300 IAS = 240 kt
TAS = 240 + 150 = 390 kt

11) Ground Speed out of Mach

GS (NM/min) = 10 x Mach

M 0.72
GS = 7.2 NM/min
12) Drift computation in cruise

\[
\text{Drift (°) } = \frac{\text{X-wind (kt)}}{\text{Mach}}
\]

M 0.7 X-wind 35 kt
Drift = 35 / 7 = 5°

13) Drift computation out of TAS (not IAS, unless during approach)

\[
\text{Drift (°) } = \frac{\text{X-wind (kt)}}{\text{speed number}}
\]

TAS 180 kt X-wind 36 kt
Drift = 36 / 3 = 12°

14) To find Ground Speed with DME station available

\[
\text{GS (kt) } = 10 \times \text{distance (NM) in 36s}
\]

Read distance covered in 36 seconds towards or away from station

15) Off-Track distance

\[
\text{Off-Track Distance } = \frac{\triangle \times \text{distance to station}}{60}
\]

9° off track 11 NM from station
Off-Track Distance = 9 x 11 / 60 = 99 / 60 = 1.6 NM

16) Slant distance overhead a DME – station

\[
\text{each 6000 feet altitude } \rightarrow 1 \text{ NM DME}
\]

Overhead station FL 330
you will read 33000 / 6000 = 5.5 NM on DME

17) Intercepting outbound leg when close to the VOR-DME station (valid for Mach 0.7)

1 NM for each \(\triangle 30° \)

FL 330 Inbound on R-180 (Hdg N) to track 060 outbound
Start your turn to 060 at 2 NM before (+ slant 5.5NM)

18) Intercept Heading when passing over station before turning to outbound Heading

\[
\text{Attack (°) } = \frac{1}{3} \times \triangle \text{Track (°)}
\]

Inbound on 180 (Hdg N) to track 060 outbound
Take Heading 080 overhead Station to intercept Radial

19) Intercept Heading when a little bit off-track

\[
\text{Attack (°) } = 3 \times \text{Off-Track angle (°)}
\]

On R-310 outbound instead of R-315
Take attack 15° to rejoin

20) Top of Descent (Idle thrust - 3° descent path)

\[
\text{TOD (NM) } = \frac{\triangle \text{FL}}{3}
\]

FL 280 down to 2000 feet
TOD = 260 / 3 = 87 NM

21) R/D required to be down at certain point

\[
\text{R/D (feet/min) } = \text{speed number} \times \text{altitude (feet)} \div \text{distance (NM)}
\]

Descent 17000 feet in the next 28 NM
TAS 240 kt
R/D = 4 x 17000 / 28 = 2400 feet/min

22) Vertical speed by changing Body Attitude (valid for high speeds)

\[
\text{R/D (feet/min) } = \text{Mach} \times \Delta \text{BA (°)}
\]

Mach 0.74 \(\rightarrow \) One degree BA results in 740 feet/min

23) Vertical speed by changing Body Attitude (valid for lower speeds)

Use TAS or IAS in approach

\[
\text{R/D (feet/min) } = \text{speed number} \times \Delta \text{BA (°)}
\]

Speed TAS 420 kt BA 3 degrees down
R/D = 7 x 3 = 2100 feet/min
24) Distance required if you want to maintain a certain R/D profile

\[
\text{Distance (NM)} = \frac{\text{speed number x altitude (feet)}}{\text{R/D}}
\]

Descent 23000 feet at 1000 feet/min TAS 300 kt
Distance = 5 x 23 = 115 NM

25) Wind correction for descent distance

\[
\text{Wind Corr (NM)} = 10\% \text{ for each } 40 \text{ kt component}
\]

Example Thumbrule 20) with 20 kts Tailwind
Add 58 to 87 = 92 NM

26) R/D required to follow a certain glide %

\[
\text{R/D (feet/min)} = \text{Ground Speed (kt)} \times \%
\]

TAS 350 kts 20 kts tailwind Glide 3° = 5%
R/D = 370 x 5 = 1850 feet/min

27) Conversion % versus degrees for glide path

\[
\% = \frac{10 \times \text{degrees}}{6}
\]

ILS 3° Glide Slope \(\rightarrow\) 30 / 6 = 5%

28) Start the roll-out from a turn when

\[
\Delta \text{Heading (*) to go} = \frac{\text{Bank (*)}}{3}
\]

Bank 25° Right turn to Hdg 080
Start roll-out 8° in advance, thus on Hdg 072

29) Amount of Bank required for a turn

\[
\text{Bank (*)} = \Delta \text{Heading (*)}
\]

Heading North Right to Heading 007
Take 7° Bank

30) Bank required for a rate one turn

\[
\text{Bank (*)} = 15\% \text{ TAS (kt)}
\]

TAS 180 kt Rate one turn
Bank = 18 + 9 = 27°

31) Turn diameter of a rate one turn

\[
\text{Diameter (NM)} = \frac{\text{TAS (kt)}}{100}
\]

TAS 150 kt
Turn Φ = 1,5 NM

32) Outbound timing for a base turn, when not mentioned on the chart

\[
\text{Time (min)} = \frac{36}{\Delta \text{Track}}
\]

ILS Rwy 27 (QFU 270) Teardrop 066 outbound
Time = 36 / (090-066) = 1,5 min

33) R/D to follow the glide slope ILS 3° = 5%

\[
\text{R/D (feet/min)} = 5 \times \text{Ground Speed (kt)}
\]

On Glide Slope TAS 140 kt 10 kt Tailwind
R/D = 750 feet/min

34) Visibility required to see threshold at VDP (Non-Precision Approach)

\[
\text{Vis (m)} = 6 \times \text{MDA (feet)}
\]

MDA 430 feet
Visibility = 6 x 430 feet = 2500 m

35) Memorize this table 1/60

<table>
<thead>
<tr>
<th>speed (kt)</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed number</td>
<td>2</td>
<td>2½</td>
<td>3</td>
<td>3½</td>
<td>4</td>
<td>4½</td>
<td>5</td>
<td>5½</td>
</tr>
</tbody>
</table>
FREE Pilot logbook software

The free Pilot Logbook Software offers the following features:

- flights and simulator session logging
- print your logbook on self-adhesive labels in different formats
- automatic calculation of sunrise, sunset and night flight time
- automatic interface with your airline duty roster
- printing of many listings, reports, charts
- export of all data to printer, to Microsoft Excel or to Acrobat PDF

Additional information:

The software comes with a worldwide database with 13,000 airports, including ICAO and IATA identifiers and geographical co-ordinates. The software automatically calculates sunrise, sunset and night flight time.

Automatic fill-out of the return- or triangular flight leg, automatic recognition of flight numbers.

Contains pilots database to keep track of all phone numbers and e-mail addresses, and you can even make a web cam picture of your fellow pilot.

Prints your flights in different formats, such as the Professional Pilot ASA logbook, Jeppesen Logbook, JAA-FAA-CAA Logbook, etc. If your logbook format is not included, contact the author to have it added!

Interface with you airline digital flight report or duty roster (AIMS, CrewDock, 2Log, …) and have all flights imported automatically!

FREE Download:

www.mccpilotlog.net